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Abstract

Background—Extremely drug-resistant gram-negative bacilli (XDR-GNB) increasingly cause 

healthcare-associated infections (HAIs) in intensive care units (ICUs).
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Methods—A matched case-control (1:2) study was conducted from February 2007 to January 

2010 in 16 ICUs. Case and control subjects had HAIs caused by GNB susceptible to ≤1 antibiotic 

versus ≥2 antibiotics, respectively. Logistic and Cox proportional hazards regression assessed risk 

factors for HAIs and predictors of mortality, respectively.

Results—Overall, 103 case and 195 control subjects were enrolled. An immunocompromised 

state (OR=1.55, p=0.047) and exposure to amikacin (OR=13.81, p<0.001), levofloxacin 

(OR=2.05, p=0.005), or trimethoprim-sulfamethoxazole (OR=3.42, p=0.009) were factors 

associated with XDR-GNB HAIs. Multiple factors in both case and control subjects significantly 

predicted increased mortality at different time intervals after HAI diagnosis. At 7 days, liver 

disease (Hazard Ratio [HZ]=5.52), immunocompromised state (HR=3.41), and bloodstream 

infection (HR=2.55) predicted mortality; at 15 days, age (HR=1.02 per year increase), liver 

disease (HR=3.34), and immunocompromised state (HR 2.03) predicted mortality; and at 30 days, 

age (HR=1.02 per one year increase), liver disease (HR=3.34), immunocompromised state 

(HR=2.03), and hospitalization in a medical ICU (HR=1.85) predicted mortality.

Conclusions—HAIs caused by XDR-GNB were associated with potentially modifiable factors. 

Age, liver disease, and immunocompromised state, but not XDR-GNB HAIs, were associated with 

mortality.

Introduction

Antibiotic-resistant gram-negative bacilli (GNB) are increasingly common causes of 

healthcare-associated infections (HAIs) in intensive care units (ICUs) [1] and are associated 

with higher mortality rates, longer hospitalizations, and increased healthcare expenditures 

[2, 3]. Effective treatment for extremely drug-resistant (XDR) GNB infections is challenging 

due to limited therapeutic options [4].

In this study, we examined the epidemiology and outcomes of HAIs caused by XDR-GNB 

in the 16 ICUs affiliated with our medical center. We performed a case-control study to 

identify risk factors associated with XDR-GNB infections compared with non-XDR-GNB 

infections. We hypothesized that exposure to carbapenem agents would be associated with 

HAIs caused by XDR-GNB. In addition, we performed a survival analysis to explore if 

predictors for death changed 7, 15, and 30 days after diagnosis of an HAI. We hypothesized 

that HAIs caused by XDR-GNB would be associated with an increased hazard for mortality 

and that the effect would be most pronounced at 7 days, rather than at 15 or 30 days.

Materials and Methods

Study Design and Study Setting

This study was a prospective cohort study with a nested, matched case-control study. It was 

conducted from February 2007 to January 2010 in the 16 ICUs affiliated with NewYork-

Presbyterian (NYP) Hospital located in New York City. NYP is a 2,278-bed (383 ICU-bed) 

tertiary-care facility affiliated with two medical schools, Columbia University College of 

Physicians and Surgeons and Weill Cornell Medical College. Study ICUs included medical 

(n=5), surgical (n=6), burn (n=1), and pediatric/neonatal (n=4) ICUs and had approximately 

14,800 annual patient admissions. Institutional Review Board approval was obtained from 
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Columbia University Medical Center and Weill Cornell Medical College with a waiver of 

informed consent.

Study Subjects and Case Definitions

The cohort was defined as all patients admitted to the study ICUs during the study period. 

Case subjects were defined as patients hospitalized in the ICU with healthcare-associated 

bloodstream infections (BSIs), pneumonia (PNA), or urinary tract infections (UTIs) caused 

by XDR-Acinetobacter spp., Klebsiella pneumoniae, or Pseudomonas aeruginosa (defined 

below). Control subjects were defined as patients hospitalized in the ICU with HAIs caused 

by non-XDR Acinetobacter spp., K. pneumoniae, or P. aeruginosa. HAIs were diagnosed 

using the Centers for Disease Control & Prevention's National Hospital Safety Network 

(NHSN) definitions [5], but modified to include antimicrobial treatment. When feasible, 

case and control subjects were matched (1:2) by the following matching hierarchy: campus 

(Columbia or Cornell), type of ICU (medical or surgical), type of infection (BSI, PNA, or 

UTI), date of culture, and pathogen (Acinetobacter spp., K. pneumoniae, or P. aeruginosa). 

Patients were excluded if their infections developed < 48 hours after hospital admission, 

were a non-study type of infection, e.g., skin and soft tissue infection, or were caused by a 

non-study pathogen.

XDR-GNB were the species described above, susceptible to ≤1 antimicrobial agent or only 

susceptible to imipenem and meropenem as determined by commercial broth microdilution 

susceptibility panels (described below). Non-XDR-GNB were susceptible to ≥2 

antimicrobial agents. Susceptibility to tigecycline and polymyxin B were not included in the 

definitions of XDR- and non-XDR-GNB, as these agents were not consistently tested at the 

study sites. MICs were interpreted according to the Clinical and Laboratory Standards 

Institute breakpoints in effect during the study period [6-8].

Potential subjects were identified prospectively using EpiPortal, a web-based surveillance 

system developed by the NYP Department of Infection Prevention & Control and 

Department of Information Technology and Columbia University Department of Biomedical 

Informatics [9]. EpiPortal integrates data from different electronic systems (e.g., 

microbiology laboratories, pharmacy, medical records) to identify patients with 

epidemiologically significant organisms including multidrug-resistant pathogens. The 

electronic medical record of each potential subject was reviewed by a study physician to 

confirm case or control status and to determine the presence of comorbid conditions, 

antibiotic exposures, and medical device use (central venous catheter, mechanical 

ventilation, and/or urinary catheter). Demographic and microbiological data were also 

obtained from the electronic medical record.

At the Columbia campus, blood culture samples from adults were inoculated into BD Bactec 

Plus Aerobic/F and Bactec Lytic/10 Anaerobic/F bottles, while pediatric samples were 

inoculated into Bactec Peds Plus/F bottles (Becton Dickinson, Franklin Lakes, NJ). At the 

Cornell campus blood culture samples obtained from adults and children were inoculated 

into BactT Alert bottles (bioMérieux, Durham, NC). Respiratory and urine samples were 

plated onto MacConkey agar at both study sites. During the study period, the clinical 

microbiology laboratories used the Vitek 2 system (bioMérieux, Durham, NC) as the 
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primary method of antibiotic susceptibility testing (AST). The laboratory on the Columbia 

campus used the Vitek 2 AST GN09 prior to May 2009 and afterwards used GN35. The 

laboratory on the Cornell campus used Vitek 2 AST GN13 prior to January 2009 and 

afterwards used GN28 for Klebsiella and Acinetobacter spp. and GN31 for Pseudomonas 

aeruginosa. Both laboratories performed Etests (bioMérieux, Durham, NC) to determine 

susceptibility to polymyxin B and tigecycline for XDR strains if requested, and at Cornell, 

Etests for tigecycline were regularly performed after January 2009.

Risk Factors for HAIs and Predictors of Mortality

Risk factors evaluated for HAIs caused by XDR-GNB vs. non-XDR-GNB included age, sex, 

race and ethnicity; days of ICU and hospital stay prior to infection; comorbid conditions 

(defined below); exposure to antibiotics administered during hospitalization in the 30 days 

prior to infection; and use of medical devices in the 7 days prior to infection. Comorbid 

conditions were defined using APACHE II/III classification [10]. Briefly, liver disease was 

defined as biopsy-proven cirrhosis or portal hypertension; respiratory disease was defined as 

a chronic process resulting in severe exercise restriction; cardiovascular disease was defined 

as symptoms of cardiac insufficiency at rest; renal impairment was defined as the use of 

chronic dialysis; and immunocompromised state was defined as conditions that increased 

susceptibility to infection (e.g., leukemia/lymphoma, metastatic cancer) or receipt of 

immunosuppressant medications (e.g., chemotherapy, high dose steroids).

Potential predictors of mortality were infection with an XDR-GNB, age, sex, comorbid 

conditions, type of ICU, duration of ICU stay prior to infection, pathogen, type of infection, 

and time to effective therapy (defined below).

Outcomes

The onset of HAIs was defined as the first day of positive culture(s). Several outcomes 

related to antibiotic treatment were compared among case vs. control subjects. These 

included: (1) duration of therapy (calendar days) with ≥1 antibiotic(s) with GNB activity 

administered following HAI diagnosis; (2) the number of antibiotics with GNB activity; (3) 

time to effective therapy with ≥1 antibiotic(s) to which the infecting organism was 

susceptible in vitro, including tigecycline and polymyxin B; and (4) duration of effective 

therapy. Effective therapy was considered “not received” if the time to effective therapy was 

>7 days. In addition, the proportion of case vs. control subjects with persistently positive 

blood cultures (i.e., positive cultures for >1 calendar day) within 7 days of the first blood 

culture was determined. During the hospital admission in which the HAI was diagnosed, 

mortality was determined 7, 15, and 30 days after the HAI was diagnosed.

Statistical Analysis

To assess risk factors for HAIs, conditional logistic regression was used for bivariate 

analyses. Using a backward elimination approach, multivariable conditional logistic 

regression was used to examine potential risk factors associated with HAIs caused by XDR-

GNB. The final model included age, sex, and length of stay prior to infection, and all risk 

factors significant at p<0.05.
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To assess predictors of mortality, Cox proportional hazards regression was used for bivariate 

analyses. Using a backward elimination approach, multivariable Cox proportional hazards 

regression was used to examine potential predictors of risk of mortality at a specific time 

point (i.e., hazard). Three survival analyses were conducted to explore if predictors changed 

when the observation time for subjects was censored at 7, 15, and 30 days following HAI 

diagnosis. The final models included age and case status, and all predictors significant at 

p<0.05. Statistical analyses were completed in SAS 9.2 for Windows (SAS Institute Inc., 

Cary, NC).

Results

Subjects

During the study period, 103 case subjects and 195 control subjects were identified; 92 case 

subjects were matched to 2 control subjects and 11 were matched to 1 control subject. The 

demographic and clinical characteristics of subjects are shown in Table 1. Six case and 8 

control subjects were <18 years old, including one case from the neonatal ICU. Consistent 

with the matching strategy, comparable proportions of subjects were hospitalized at each 

campus and type of ICU. Pneumonia was the most common HAI, followed by BSI. While 

the proportion of case and control subjects with HAIs caused by K. pneumoniae was similar, 

the proportions of infections caused by Acinetobacter spp. and P. aeruginosa were 

significantly different among case and control subjects (p<0.001); few HAIs were caused by 

XDR-P. aeruginosa or by non-XDR-Acinetobacter spp.

Antibiotic Susceptibilities of GNB Isolates

The antimicrobial susceptibilities of the GNB isolates from case and control subjects are 

shown in Table 2. Consistent with the case definitions, a greater proportion of non-XDR-

GNB isolates were susceptible to aminoglycoside, fluoroquinolone, and β-lactam agents 

than XDR-GNB. Susceptibility to these antimicrobial classes varied from 0% to 16% among 

XDR isolates and from 86% to 99% among non-XDR isolates. Most XDR isolates had 

tigecycline MICs ≤2 μg/mL (68%, 58/85 tested) and polymyxin B MICs ≤2 μg/mL (90%, 

75/83 tested).

Risk factors for XDR-GNB HAIs

The proportion of case and control subjects with comorbid conditions and device use is 

shown in Table 3. Compared to control subjects, case subjects were more likely to have 

chronic respiratory conditions and to require mechanical ventilation, but did not have a 

longer hospital or ICU length of stay prior to infection.

Inpatient antibiotic use during the 30 days prior to infection differed among case and control 

subjects as shown in Table 4. In the bivariate analyses, case subjects were more likely to 

have been exposed to several antimicrobial agents including amikacin, a carbapenem agent, 

linezolid, piperacillin-tazobactam, polymyxin B, tigecycline, trimethoprim-

sulfamethoxazole, and vancomycin.

Patel et al. Page 5

Am J Infect Control. Author manuscript; available in PMC 2015 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the final multivariable analyses, four variables were identified as significant risk factors 

for HAIs caused by XDR-GNB as shown in Table 5. These included immunocompromised 

state and exposure to the antimicrobial agents amikacin, levofloxacin, or trimethoprim-

sulfamethoxazole. Comorbid conditions and device use were not identified as risk factors.

Antibiotic Treatment and Persistently Positive Blood Cultures

The mean duration of antibiotic therapy was similar among case (15.7 days) and control 

(13.4 days) subjects (p=0.41). However, more antimicrobial agents with GNB activity were 

administered to case (mean 3.8 antibiotics) than to control (mean 3.1 antibiotics) subjects 

(p=0.001). Although the mean duration of effective therapy did not differ between case 

(11.1 days) and control (9.8 days) subjects (p=0.21), the mean time to effective therapy was 

longer for case (3.0 days) than control (1.3 days) subjects (p<.001). Furthermore, fewer case 

(83%) than control (96%) subjects received effective therapy within 7 days of their first 

positive blood culture (p<0.001). Among those who survived at least one week following 

their first positive blood culture, 12% (3/25) of case and 16% (7/44) of control subjects had 

persistently positive blood cultures (p=0.66).

Mortality

More case (59%) than control (31%) subjects died during their hospital stay (p<0.001). 

Among those who died, the mean survival after HAI was similar among case (22.6 days) 

and control (27.1 days) subjects (p=0.44). Among cases, 11 deaths occurred within 7 days of 

infection and 21 deaths occurred >30 days after infection. For those with BSIs, mortality 

was higher for case (77%, 26/34) than control (31%, 21/68) subjects (p<0.001). Similarly, 

for those with PNA, mortality was higher for case (58%, 29/50) than control (36%, 33/92) 

subjects (p=0.010). However, mortality was similar among case (32%, 6/19) and control 

(20%, 7/35) subjects with UTIs (p=0.53).

The multivariable Cox proportional hazards regression for 7-, 15-, and 30-day mortality is 

presented in Table 6. Case status was not an independent predictor of mortality at any of 

these time intervals, but an immunocompromised state or liver disease was an independent 

predictor. BSI was a significant predictor for 7-day mortality only, while older age was a 

significant predictor for 15- and 30-day mortality. Type of pathogen and time to effective 

therapy were not independent predictors of mortality.

Discussion

This is one of the largest recent studies to describe the epidemiology of HAIs caused by 

XDR-GNB among patients hospitalized in ICUs and to assess relevant outcomes including 

predictors of mortality. To further delineate the impact of HAIs caused by XDR-GNB, we 

performed a matched case-control study adjusting for previously identified predictors of 

HAIs caused by resistant pathogens including several comorbid conditions, use of medical 

devices, and length of stay [11]. We demonstrated that an immunocompromised state or 

previous treatment with amikacin, levofloxacin, or trimethoprim-sulfamethoxazole within 

30 days of infection were risk factors for HAIs caused by XDR-GNB. While in-hospital 

mortality was higher among case subjects, XDR-GNB HAIs did not predict mortality at 7, 
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15, or 30 days after HAI diagnosis. However, BSIs caused by either XDR- or non-XDR-

GNBs did predict mortality at 7 days.

Contrary to our hypothesis, we did not find that treatment with carbapenem agents was a 

risk factor for XDR infection. Several previous studies have also assessed antimicrobial 

exposures as risk factors for infection and/or colonization with XDR GNB, but have not had 

consistent findings. Henceforth in this discussion, we will use the term multi-drug resistant 

(MDR) GNB, as it is the term most commonly used by the authors cited, though definitions 

of XDR and MDR GNB may vary. Use of fluoroquinolone agents has been associated with 

HAIs caused by K. pneumoniae carbapenemase (KPC)-producing strains or carbapenem-

resistant A. baumannii [12, 13]. Exposure to imipenem [14, 15], piperacillin-tazobactam 

[14], vancomycin [14, 15], or aminoglycoside agents [14, 15] has also been associated with 

detection of imipenem-resistant P. aeruginosa from clinical cultures. Furthermore, exposure 

to trimethoprim-sulfamethoxazole has been associated with MDR- Stenotrophomonas 

maltophilia [16], colonization with trimethoprim-sulfamethoxazole-resistant 

Enterobacteriaceae [17] and UTIs caused by trimethoprim-sulfamethoxazole-resistant 

Escherichia coli [18].

While an immunocompromised state has been described as a risk factor for HAIs [19], the 

association with MDR-GNB infection is less clear. Steroid use during the previous 30 days 

has been associated with infections caused by extended spectrum β-lactamase (ESBL)-

producing E. coli and K. pneumoniae [20]. Similarly receipt of antineoplastic, 

immunosuppressive, and immunomodulating agents has been associated with acquisition of 

MDR-GNB [21]. Conversely, others did not find that immune suppression (defined as solid 

or hematological malignancy, leukopenia, or chronic use of immunosuppressive agents) was 

associated with MDR-GNB infections [22].

However, studies of risk factors for MDR-GNB infections and/or colonization are difficult 

to compare. Study designs, study populations, local epidemiology, and definitions of 

resistance vary widely [23, 24]. Furthermore, risk factors may be affected by the route of 

acquisition of MDR-organisms (MDROs); MDROs may arise from de novo selection via 

antibiotic exposure or be transmitted from other patients, healthcare personnel, or the 

healthcare environment [25]. Additional factors may increase the risk of progression from 

colonization to infection such as medical devices, breakdown in mucosal barriers, or 

impaired immune function [11].

While others have reported that HAIs caused by MDR-GNBs were associated with 

increased mortality [26, 27], XDR case status was not a predictor of mortality in the current 

study, despite more deaths in case subjects. Notably, many deaths among case subjects 

occurred >30 days after infection and few deaths occurred within 7 days of infection, as 

would be expected for HAI-attributable mortality. Our survival analysis implicated two 

comorbid conditions, liver disease and an immunocompromised state, as independent 

predictors of mortality at 7, 15 and 30 days after HAIs. We speculate that the severity of 

illness associated with these comorbid conditions accounted for the increased risk of 

mortality. Others have also found that higher APACHE II scores and Charlson comorbidity 

indices have also been associated with an increased mortality risk [28].
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We explored several predictors of mortality related to antibiotic treatment. We did not find 

that a delay in effective therapy impacted mortality—again likely confounded by the effect 

of comorbidities. Similarly, two previous studies have shown that timely administration of 

antibiotics was not associated with survival among patients with BSIs caused by 

carbapenem-resistant K. pneumoniae [2, 29]. In contrast, delays in appropriate therapy have 

been associated with mortality in patients with MDR E. coli and P. aeruginosa bacteremia 

[30, 31]. In the current study, while the mean duration of therapy was similar among case 

and control subjects, case subjects received more unique antibiotics. Thus, treatment of 

XDR-GNB most likely results in more antibiotic exposures and further antibiotic resistance.

This study had limitations. It was performed at a large, tertiary care hospital system in New 

York City and findings may not be generalizable to other settings; NYC is known to be an 

epicenter for XDR-GNB infections in ICUs [32]. Our definition of XDR-GNB was crafted 

prior to the recent international consensus definition which could further limit the 

generalizability of our findings [33]. We did not determine clonality and therefore could not 

distinguish if the infections were endemic or epidemic. The diagnosis of pneumonia, even 

using NHSN diagnostic criteria, lacks both sensitivity and specificity [34]. We did not assess 

the potential impact of removal of central venous catheters which may have impacted 

outcomes. Our matching hierarchy may have led to overmatching and selection bias [35]. 

The use of control subjects infected with susceptible GNBs may have inflated the odds 

ratios for antibiotic exposures since patients previously treated with antibiotic agents may be 

less likely to be infected with a susceptible organism [36]. Lastly, while comorbid 

conditions were associated with mortality, attributable mortality was no assessed.

Conclusion

XDR-GNB infections have emerged as a clinical threat to hospitalized patients, particularly 

to those in the ICU. We have demonstrated that XDR-GNB infections were associated with 

exposures to several antibiotics, some of which may be amenable to antibiotic stewardship 

[37]. Predictors for mortality after HAIs with XDR-GNB were not modifiable, as mortality 

was more likely to be associated with age and underlying diseases.
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Table 1
Characteristics of Case vs. Control Subjects with Healthcare-associated Infections Caused 
by Gram-Negative Bacilli

Characteristic Case Subjects (n=103) Control Subjects (n=195) p-valuea

n (%)

Age group 0.701

 < 50 yrs 22 (21.4) 44 (22.6)

 50–75 yrs 57 (55.3) 94 (48.2)

 > 75 yrs 24 (23.3) 57 (29.2)

Sex 1.00

 Male 59 (57.3) 111 (56.9)

 Female 44 (42.7) 84 (43.1)

Race 0.43

 White 34 (33.0) 47 (24.1)

 Black 8 (7.8) 21 (10.8)

 Asian/Pacific Islander 2 (1.9) 4 (2.1)

 Other 15 (14.6) 30 (15.4)

 Unknown 44 (42.7) 93 (47.7)

Ethnicity 0.63

 Hispanic 12 (11.7) 18 (9.2)

 Non-Hispanic 30 (29.1) 51 (26.2)

 Unknown 61 (59.2) 126 (64.6)

Campusb 1.00

 Columbia University Medical Center 49 (47.6) 96 (49.2)

 Weill Cornell Medical Center 54 (52.4) 99 (50.8)

ICU typeb 0.82

 Medical ICU 53 (51.5) 103 (52.8)

 Surgical and Burn ICU 50 (48.5) 92 (47.2)

Type of infectionb 1.00

 Bloodstream 34 (33.0) 68 (34.9)

 Pneumonia 50 (47.6) 92 (47.2)

 Urinary tract 19 (19.4) 35 (17.9)

Pathogenb <0.001

 Klebsiella pneumoniae 48 (46.6) 100 (51.3)

 Acinetobacter spp. 49 (47.6) 21 (10.8)

 Pseudomonas aeruginosa 6 (5.8) 74 (37.9)

a
Bivariate conditional logistic regression

b
Variable included in matching hierarchy
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ICU= Intensive care unit
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Table 2
Comparison of Selected Susceptibility Profiles of Gram-Negative Bacilli Causing 
Healthcare-associated Infections among Case and Control Subjects

Antimicrobial Agent Case Subjects (n=103) Control Subjects (n=195)

Susceptible n/Na (%) Susceptible n/Na (%)

Amikacin 15/96 (15) 193/195 (99)

Cefepime 7/98 (7) 166/193 (86)

Ciprofloxacin 0/50 (0) 86/96 (90)

Gentamicin 16/102 (16) 178/196 (91)

Imipenem 1/67 (1) 129/142 (91)

Levofloxacin 0/102 (0) 167/195 (86)

Meropenem 6/82 (7) 127/140 (91)

Piperacillin-tazobactam 1/51 (2) 76/87 (87)

Polymyxin Bb 75/83 (90) 14/14 (100)

Tigecyclinec 58/85 (68) 5/9 (56)

Trimethoprim-sulfamethoxazole 1/101 (1) 100/121 (83)

Tobramycin 3/82 (4) 162/170 (95)

a
n= number susceptible isolates and N= number of isolates with available results

b
Interpretive criteria do not exist for the Enterobacteriacae when testing polymyxin B; therefore, the susceptible breakpoint of ≤2 μg/mL approved 

for P. aeruginosa and Acinetobacter spp. was employed for these organisms.

c
Interpretive criteria do not exist for the Acinetobacter spp. when testing tigecycline; therefore, the susceptible breakpoint of ≤2 μg/mL approved 

for Enterobacteriacae was employed for these organisms.
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Table 3
Risk Factors for Healthcare-associated Infections (HAIs) with Gram-Negative Bacilli: 

Comorbid Conditions and Medical Device Usea

Risk factors Case Subjects N=103 Control Subjects N=195 p-value

Comorbid Conditions n (%)

 None 47 (45.6) 113 (57.9) 0.12

 Liver disease 5 (4.9) 9 (4.6) 0.90

 Immunocompromised state 33 (32.0) 41 (21.0) 0.11

 Cardiovascular disease 9 (8.7) 14 (7.2) 0.70

 Chronic respiratory disease 12 (11.7) 7 (3.6) 0.028

 Chronic renal impairment 15 (14.6) 15 (7.7) 0.22

Length of stay prior to HAI

 Hospital, mean ± SD (days) 28.8 ± 31.2 20.3 ± 23.9 0.13

 ICU, mean ± SD (days) 11.5 ± 9.5 11.2 ± 17.3 1.00

Device use within 7 days of HAI

 Mechanical ventilation 85 (82.5) 124 (63.6) 0.011

 Urinary catheter 93 (90.3) 156 (80.0) 0.17

 Central venous catheter 81 (78.6) 143 (73.3) 0.48

a
Bivariate Analyses

ICU= Intensive care unit
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Table 4
Antimicrobial Use Within 30 days Prior to Healthcare-associated Infections

Antimicrobial Agent Case Subjects N=103 Control Subjects N=195 OR (95%CI) p-valuea

n (%)

Amikacin 13 (12.6) 1 (0.5) 13.07 (2.96, 57.66) 0.001

Ampicillin 9 (8.7) 6 (3.1) 1.91 (0.84, 4.32) 0.12

Ampicillin-sulbactam 9 (8.7) 12 (6.1) 1.22 (0.64, 2.34) 0.54

Aztreonam 7 (6.8) 6 (3.1) 1.59 (0.70, 3.60) 0.27

Carbapenems 33 (32.0) 20 (10.3) 2.32 (1.44, 3.74) 0.001

Cefazolin 9 (8.7) 24 (12.3) 0.84 (0.47, 1.47) 0.54

Cefepime 20 (19.4) 19 (9.7) 1.53 (0.94, 2.48) 0.09

3rd generation cephalosporinb 13 (12.6) 15 (7.7) 1.36 (0.76, 2.41) 0.30

Clindamycin 3 (2.9) 6 (3.1) 1.00 (0.42, 2.40) 1.00

Daptomycin 6 (5.8) 5 (2.6) 1.63 (0.66, 4.00) 0.29

Gentamicin 14 (13.6) 15 (7.7) 1.28 (0.75, 2.18) 0.36

Levofloxacin 21 (20.4) 21 (10.8) 1.51 (0.94, 2.42) 0.09

Linezolid 22 (21.4) 12 (6.2) 2.37 (1.33, 4.20) 0.003

Macrolidec 19 (18.5) 19 (9.7) 1.53 (0.87, 2.68) 0.14

Metronidazole 25 (24.3) 38 (19.5) 1.13 (0.77, 1.64) 0.54

Oxacillin 6 (5.8) 12 (6.2) 0.85 (0.42, 1.70) 0.64

Piperacillin-tazobactam 73 (70.9) 101 (51.8) 1.46 (1.04, 2.06) 0.029

Polymyxin B 11 (10.7) 0 (0) 1.13 (1.28, 3.54) <0.001

Tigecycline 10 (9.7) 2 (1.0) 5.16 (1.65, 16.13) 0.005

Tobramycin 31 (30.1) 34 (17.4) 1.57 (0.99, 2.47) 0.05

Trimethoprim-sulfamethoxazole 14 (13.6) 4 (2.1) 3.62 (1.56, 8.39) 0.003

Vancomycin 78 (75.3) 104 (53.3) 1.57 (1.12, 2.22) 0.001

a
Bivariate Analyses

b
Cefotaxime, ceftriaxone, ceftazidime

c
Erythromycin or azithromycin
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Table 5
Risk Factors Associated with Healthcare-associated Infections Caused by Extremely 
Drug-resistant Gram-Negative Bacilli, Multivariable analysis

Risk Factora OR (95% CI) p-value

Immunocompromised state 1.55 (1.01, 2.39) 0.047

Amikacin 13.81 (2.96, 64.47) 0.001

Levofloxacin 2.05 (1.24, 3.40) 0.005

Trimethoprim-sulfamethoxazole 3.42 (1.36, 8.60) 0.009

a
Age, sex, and hospital stay were forced into the final model and were not significant
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Table 6
Predictors of Mortality after Healthcare-associated Infection (HAI) Diagnosis with 
Censoring at 7-, 15-, and 30-days

Predictors of Mortality Multivariable Cox Proportional Hazards Analysis

Hazard Ratio (95% CI) p-value

Death within 7 days

Case statusa 0.94 (0.42, 1.95) 0.87

Age (per one year increase)a 1.01 (0.99, 1.04) 0.22

Liver disease 5.52 (1.79, 16.99) 0.003

Immunocompromised state 3.41 (1.67, 6.96) 0.001

Bloodstream infectionb 2.55 (1.32, 4.86) 0.005

Death within 15 days

Case statusa 1.39 (0.84, 2.31) 0.20

Age (per one-year increase)a 1.02 (1.00, 1.04) 0.014

Liver disease 3.24 (1.30, 8.07) 0.012

Immunocompromised state 2.66 (1.57, 4.50) <.001

Death within 30 days

Case statusa 1.39 (0.90, 2.15) 0.14

Age (per one-year increase)a 1.02 (1.01, 1.03) 0.002

Liver disease 3.34 (1.56, 7.12) 0.001

Immunocompromised state 2.03 (1.33, 3.11) 0.001

Medical intensive care unitc 1.85 (1.22, 2.86) 0.005

a
Case status and age were included a priori in the model

b
Compared to urinary tract infection

c
Compared to surgical intensive care unit
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